The Flying Sidekick Travelling Salesman Problem with Integrated Pickup and Delivery (FSTSP-PD)

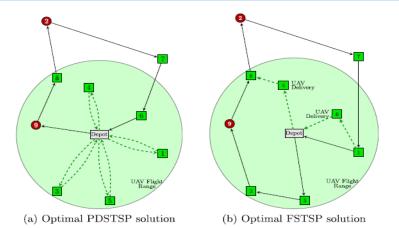
Nawin Yanpirat, Daniel F. Silva, and Alice E. Smith Department of Industrial & Systems Engineering Auburn University

Outline

- Introduction
- Assumptions
- Truck and Drone Routes: Example
- Experiment
- Results
- Conclusions
- Future Research

https://www.youtube.com/watch?v=epqZ-luhzKQ

Introduction


Benefits of pickup function

- Increase utilization of drones
- Reduce inconvenience of returning goods
- Potentially serve more customers in a given area
- According to Steve Dennis (2017), e-commerce has a return rate between 25 - 40 percent

Introduction (Con't)

 This MILP formulation is based on The Flying Drone Sidekick Traveling Salesman Problem from Murray and Chu (2015)

 Adds constraints to allow a drone to collect parcels from the same or another customer after delivering parcels

Drone function

The drone operation for each trip can be either

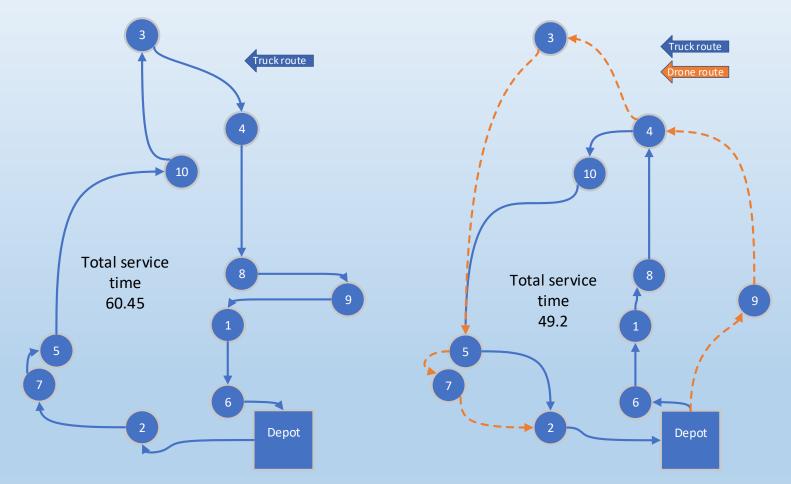
- Delivery only
- Pickup only
- Delivery and Pickup

Assumptions

- 1. One truck and one drone.
- 2. Both truck and drone have constant speeds.
- 3. The drone can carry only one parcel at a time.
- 4. The drone cannot service all customers.
- 5. All customers must be served by either the drone or the truck.

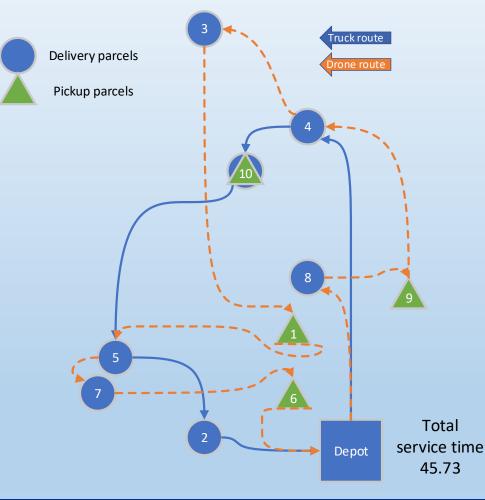
Assumptions (Con't)

- 6. The drone can depart from the truck at any customer location or the depot.
- 7. The drone can rendezvous with the truck at any customer location or at the depot.
- 8. If the drone arrives at the rendezvous point before the truck, it must hover until the truck comes.



Assumptions (Con't)

- 9. The drone uses the same amount of energy traveling or hovering.
- 10. The drone must leave customer locations immediately after picking up or delivering a parcel.
- 11. The drone has to leave before the truck leaves at any customer location but not at the depot.



Truck and Drone Routes

Truck and Drone Routes (Cont.)

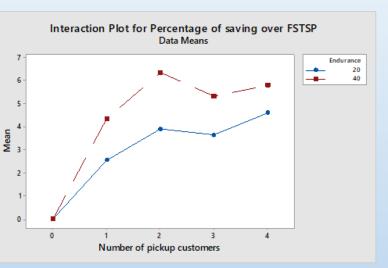
Experiment

- Performance measurement: Total service time of FSTSP-PD vs. TSP or FSTSP.
- Parameters: the number of pickup customers, drone endurance, and speed of the drone.
- The proposed model is NP-hard; we limited the experiments to instances of 10 customers.
- Solved by CPLEX Python API.

Experiment (Con't)

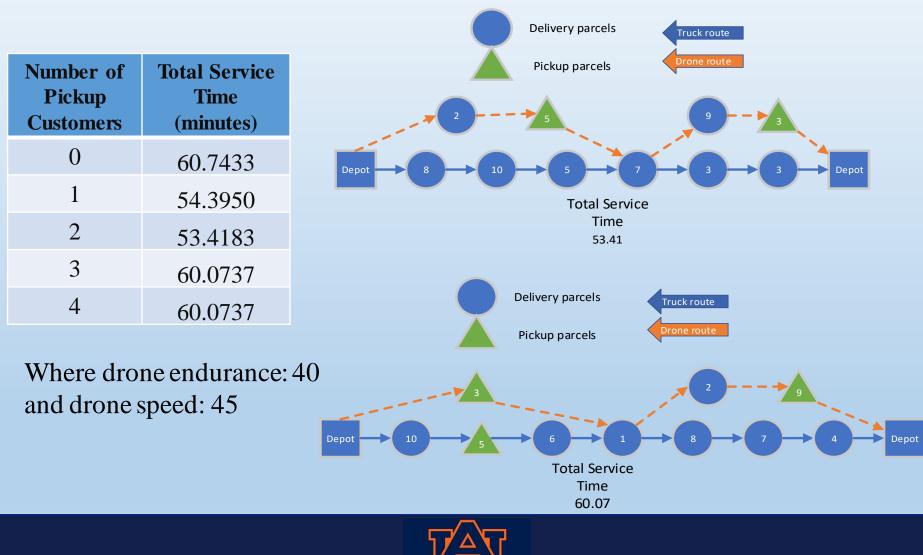
	Factors	Levels
1	Number of pickup customers	0, 1, 2, 3, 4 customers
2	Drone endurance	20 and 40 minutes
3	Drone speed	35 and 45 miles per hour

Experimental Results: Number of pickup customers

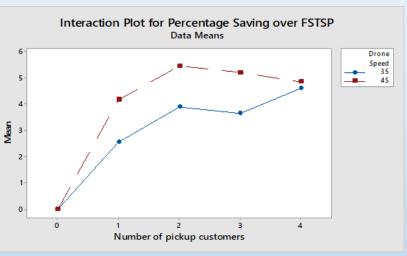

	Percentage of total service time savings of FSTSP-PD				
Number of pickup	over				
customers	Standa	rd TSP	FSTSP		
	Mean	Maximum	Mean	Maximum	
0	16.23	34.94	0.00	0.00	
1	18.07	42.34	2.54	11.37	
2	19.11	43.70	3.89	13.45	
3	18.92	43.70	3.63	13.45	
4	19.62	43.70	4.59	20.82	

Where drone endurance and drone speed are 20 and 35, respectively

Experimental Results: Drone Endurance


Number of		-	of total servi FSTSP-PD	over	-
pickup	endurance	Standard TSP		FSTSP	
customers	(Minutes)	Mean	Maximum	Mean	Maximum
0	20	16.23	34.94	0.00	0.00
0	40	19.48	34.95	0.00	0.00
1	20	18.07	42.34	2.54	11.37
1	40	22.83	42.35	4.34	11.37
2	20	19.11	43.70	3.89	13.45
2	40	24.42	43.70	6.34	13.46
3	20	18.92	43.70	3.63	13.45
3	40	23.61	43.70	5.32	13.46
4	20	19.62	43.70	4.59	20.82
4	40	23.87	43.70	5.78	22.59

Where drone speed is 35 mph



Experimental Results

Experimental Results: Drone Speed

Number	Drone	Percentage of total service time savings of FSTSP-PD over			
of pickup customers	Speed (mph)	Standard TSP (%)		FSTSP (%)	
		Mean	Maximum	Mean	Maximum
0	35	16.23	34.94	0.00	0.00
0	45	20.26	39.57	0.00	0.00
1	35	18.07	42.34	2.54	11.37
1	45	23.38	42.35	4.15	12.34
2	35	19.11	43.70	3.89	13.45
2	45	24.36	43.70	5.43	12.34
3	35	18.92	43.70	3.63	13.45
	45	24.18	45.91	5.19	12.34
4	35	19.62	43.70	4.59	20.82
4	45	23.79	45.91	4.84	18.38

Where drone endurance is 20 minutes

Conclusions

- Total service time can be reduced up to 7 percent compared to the standard FSTSP.
- Only drone endurance and number of pickup customers impact reducing total service time.
- The most important factor is the number of pickup customers.
- Increasing the number of pickup customers might lead to poor total service time.

Future Research

- Increase size of the data set.
- Develop a heuristic or meta-heuristic for better running time.
- Consider multiple trucks and drones.
- Multiple objectives such as cost functions.

